

Overview of CORECLIMAX results and expectations to the CM

Bob Su, Yijian Zeng, Wim Timmermans & the CORE-CLIMAX team

> ITC, University of Twente z.su@utwente.nl

Outline

- What is CORE-CLIMAX?
- CORE-CLIMAX Results & examples:
 - WP2
 - WP3
 - WP4
 - WP5
- Expectations



CORE-CLIMAX

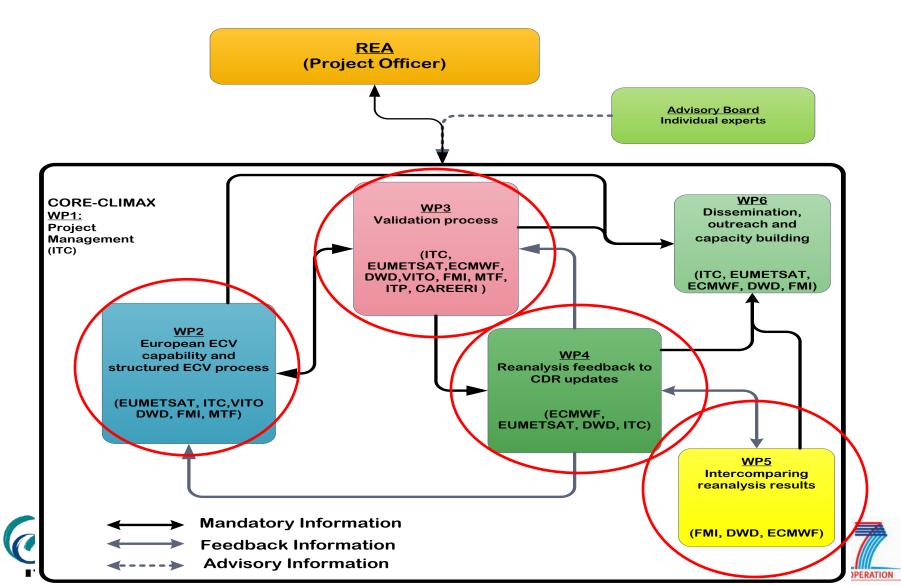
COordinating Earth observation data validation for RE-analysis for CLIMAte ServiceS

PROJECT TEAM MEMBERS

UNIVERSITEIT TWENTE.	ITC/UT: Bob Su, Wim Timmermans, Yijian Zeng, Joris Timmermans, Bert Boer
EUMETSAT	EUMETSAT: Jörg Schulz, Rob Roebeling, Viju John
ECMWF	ECMWF: Paul Poli, David Tan
	DWD: Frank Kaspar, Andrea Kaiser-Weiss, (Andre Obregon), Vera
	Heene
VITO vision on technology	VITO: Else Swinnen, Carolien Tote, Lieven Bydekerke
FINNISH METEOROLOGICAL INSTITUTE	FMI: Hilppa Gregow, Terhikki Manninen, Ali Nadir Arslan
Toujours un temps d'avance	MTF: Jean-Christophe Calvet, S. Lafont
◆ ◆ を よう な 古 素 高 原 研 究 所 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	ITP: Yaoming Ma, Binbin Wang
**** *©* © * © * * © * © *	CAREERI: Jun Wen, Cai Ying, Gao Xiaoqing, Lu Shihua, Wei Zhigang, Hu Zeyong, Gao Yanhong

CORE-CLIMAX Objectives

- 1) Coordinate with Earth Observation and climate change projects;
- 2) Propose a structured process for delivering ECVs Essential Climate Variables;
- 3) Propose **a validation process for qualifying the accuracy** of the climate variables;
- 4) Propose a feedback mechanism ensuring that the results of the re-analysis process get appropriately reflected into updates of the CDR - Climate data Records;
- 5) Propose a process to compare re-analyses.



CORE-CLIMAX work packages

WP2: European ECV capability and structured ECV process

	emplate for ECV climate data ecord description	The most important facts relevant to ECV Climate Data	\checkmark	Delivered
		To provide instruction on how to use the CORE-CLIMAX SMM to assess the maturity of CDR		Drafted
D2.23 se	eport containing the output of a elf assessment of producers using ne adapted maturity matrix	This is merged with De2.25	~	Under Progress
D2.24 🧹 th	lectronic Data Base containing ne results of self assessment and ndependent assessment	Database containing data-sets and analysis output.		
D2.25 vre	ecords based on the maturity	To document the capacity assessment conducted on behalf of the CORE-CLIMAX consortium on the European ECV CDR development.		
D2.26 √ sti	TRUCTURED DROCESS TO DERIVE FUV	As the deliverable title, it is under preparation based on the existing CORE-CLIMAX project results.		

Tools Used by CORE-CLIMAX Project

- Three elements for a capability assessment:
 - Data Record Inventories that contain technical specifications and links to documented information on quality;
 - A System Maturity Matrix (SMM) that evaluates if the production of the ECV CDR follows best practices for science, engineering and utilisation;
 - An Application Performance Metric (APM) that evaluates the performance of an ECV CDR with respect to a specific application.
- In addition User Requirements for each application, Technical Specifications and validation and/or data quality assessment results for each record are needed to 'measure' the performance.

The CORE-CLIMAX System Maturity Matrix

Maturity	SOFTWARE READINESS	METADATA	USER DOCUMENTATION	UNCERTAINTY CHARACTERISATION	PUBLIC ACCESS, FEEDBACK, UPDATE	UTILITY
1	Conceptual development	Little or none	Draft description on the theoretical basis of the methodology. Peer reviewed paper on methodology in preparation	Little or None	Little or None Restricted availability from PI	
2	Research grade code	Research grade Description on the theoretical basis of the methodology. Peer reviewed paper on methodology published; draft validation report and user guide guide		Science application demontstrated by publication		
3	Research code following producers standards with some portability, reproducibility	ndards ndards international standards for metadata, file naming tability, conventions and file format for		Product is used by scientific community. Potential benefits for climate services identified		
4	Code with systematically applied standards, portability and reproducability tested	Exists at file and collection level. Stable. Allows provenance tracking and reproducibility of dataset; Meets international standards for the dataset	Public description on the theoretical basis of the methodology; Draft description on the operational concept of the methodology; Peer review papers on methodology and product published; public validation report and user guide	Standards systematically applied, information on uncertainty and quality quantified and documented, validation for widely distributed locations and times; representativity and redundancy of information characterised	Data, source code and documentation archived and under version control and publically available; Operational quality monitoring under development; Known issues are public; Data provider establishes feedback mechanism; regular updates by PI	Used by scientific community. Started to use in climate service.Societal and economical benefits discussed
5	Operational code following standards with known quality, documented, portable and reproducible	onal code g standards wn quality, ed, portable roducible onal code g standards multix, ed, portable or dataset Neets international standards for dataset		Data, source code and documentation archived and under version control and publically available. Operational quality monitoring established; Known issues are public; Feedback mechanism and international data quality assessment are considered in periodical data record updates	Widely used by scientific community. Societal and economic benefits are demonstrated.	
6	Operational code fully compliant with standards; Stable and reproducible; portable and operationally efficient	Updated and complete at file and collection level. Stable. Allows provenance tracking and reproducibility of dataset. Meets current international standards for dataset	All formal documents public and maintained by data provider; Multiple peer reviewed papers on methodology and product published.	Standards systematically applied, errors minimized, participation in multiple international assessments; representativity and redundancy of information optimised	As Level 5; capability for fast improvements in continuous data provisions established	Widely used by multiple scientific communities. Influencing decision and policy making.

vito

on on technology

FN

Research Capability (RC) Initial Operations Capability (IOC) Full Operations Capability (FOC)

UNIVERSITY OF TWENTE.

EUMETSAT

ECMW

CORE-CLIMAX V2.0 (12/05/2013)

(J. Schulz

COOPERATION

AND UN

The CORE-CLIMAX Application Performance Metric

Performance Level	Length of Record	Spatial Coverage	Temporal Sampling	Spatial Sampling	Systematic Uncertainty (Bias)	Random Uncertainty (Precision)	Temporal Stability (Degree of Homogeneity)
1	very short	Too sparse/very limited coverage	Very infrequent with respect to user requirement	Very limited, only few locations	Large and not very well quantified	Much larger than UR and not very well quantified	Inhomogeneous
2	short	Sparse/limited coverage	Infrequent compared to user requirement	Limited, more locations but badly distributed	Large, but known	Larger tan UR, but known	Inhomogeneous
3	Not short, but not sufficient; may be used with care for some ECVs	Sparse	to user requirement,	equirement, spatial UR, moderate and UR		Above threshold UR, moderate and quantifiable	Homogenized, but there are still break- points
4	Close to be sufficient but use with care	Just sufficient	Close to user requirement, but parts of temporal variability not observed, e.g. day or night only;	Just suffiient to sample the spatial representativeness in certain areas	Close to UR, moderate and quantifiable	Close to UR, moderate and quantifiable	Homogenized, but there are still break- points
5	Sufficient, use with confidence Sufficient		Matching user requirment e.g., but diurnal cycle is not fully sampled;	Just enough to sample the spatial representativeness	Matching UR	Matching UR	Sufficiently homogeneous
6	More than sufficient	More than sufficient	Much higher than user requirement, e.g., Diurnal cycle is fully sampled; no diurnal cycle aliasing	Enough and more to capture the spatial representativeness	Better than UR	Better than UR	Homogeneous

ECMWF

EUMETSAT

vito

FM

AND HAL

(J. Schulz

COOPERATION

shall not be used usable with care

perfectly suited for application

UNIVERSITY OF TWENTE

SMM Web-Tool

Home Overview Organisation Workshop	ps Publications	Forum	System maturity matrix				
Home » assessments							
Reviewer Yijian Zeng							
ECV/CDR name							
Aerosol (Composition)	•						
Pick the ECV/CDR name Create a new dataset							
Version							
1 •		FAPAR,	Self-assessment,	Satellite			
Pick a version Create a new Version		, ,	,				
Organisation		version = 1	ecv name = FAPAR earth sys	tem domain name= Land	projectname = GIO	modificationdate=	2014/01/17
T							
Organisation that is responsible for the ECV/CDR				1			
Create a new organisation		Software Readi	ness Metadata	User documentation	Uncertainty Characterisation	Public Access Feedback Update	Usage
Earth system domain Atmosphere V		Coding standar	rds Standards	Formal description of scientific methodology	Standards	Public Access/Archive	Research
Pick the Earth system domain		Software	Collection level	Formal Validation Report	Validation	Version	Decision
ECV/CDR Type		Documentation					Support System
In-situ 🔻		Numerical	File level	Formal Product User	Uncertainty	User Feedback	
Pick the ECV/CDR Type		Reproducibility Portability	and	Guide	quantification	Mechanism	
Project		,					
Geoland V		Security	Formal description of operations concept	Automated quality monitoring	Updates to Record		
Pick the project Create a new Project				-			
Assessment Type	F	igure 2: Ai	n example of SMM we	eb tool generated o	verview of a da	taset	
Self-assessment V							

vito

FM

METEO

COOPERATION

Pick the assessment type

System Maturity Matrix

Aerosol (Composition), Geoland, 1

- Intro -

The System Maturity Matrix (SMM) is a tool to assess the system maturity of a Climate Data Record (CDR). The SMM assesses whether CDR genera

EUMETSAT ECMWF

have been compliant with best practices available in the scientific and engineering communities.

There are 6 major categories where assessments are made:

1. Software readiness

7

Assessment Report

Name			ESA Aerosol c	ci datasets			
Origin			ESA Aerosol co	ESA Aerosol cci; thomas.holzer-popp@dlr.de			
Spatial C	haracterist	ics	Global, different	t resolution (0.1	to 10 degrees)		6
Tempora	l Character	ristics	~weekly-monthl	y sampling (betw	veen 1995 and 2012)	ř
		_					
Category	Software Readiness	Metadata	User Documentation	Uncertainty Characterisation	Public Access, Feedback, Update	Usage	
Range	1-3	4-5	3-4	2-4	3-5	1-2	
	Issue Date	No. : C	CLIMAX Euro assessi C/EUM/REP/14/004 IA Draft 3 December 2014	ment report	ee 1, D-64295 Darmstac	łt,	
			C The copyright of this doct	EUMETSAT ument is the property of	EUMETSAT.		(

Name	SSU Level 1b radiances
Origin	NCDC/CLASS; Cheng-Zhi Zou cheng-zhi.zou@noaa.gov
Spatial Characteristics	Global
Temporal Characteristics	Dec 1978 – Jan 2006; Instantaneous

Category	Software Readiness	Metadata	User Documentation	Uncertainty Characterisation	Public Access, Feedback, Update	Usage
Range	1	2-3	2-3	2-3	3-4	3-4

Asse	essment	results per Datasets	.15
6.1	Fundar	nental Climate Data Records	15
	6.1.1	STRATOSPHERIC SOUNDING UNIT (SSU) FCDR	16
	6.1.2	SSM/I FCDR Edition 1.0	17
	6.1.3	Baseline Surface Radiation Network (BSRN)	18
6.2	Atmos	bhere	
	6.2.1	ESA GHG-CCI datasets	
	6.2.2	GPCC Full Data Reanalysis Version 6	
	6.2.3	NKDZ	
	6.2.4	ESA-CCI Aerosol datasets	
	6.2.5	GNSS Radio Occultation	23
	6.2.6	Free Tropospheric Humidity (FTH)	.24
	6.2.7	HOAPS release 3.2	.24
	6.2.8	ECA&D	26
	6.2.9	EOBS	27
	6.2.10	Heleosat Surface Radiation	.28
	6.2.11	CLARA-A1 Surface Radiation	.28
	6.2.12	CLARA-A1 Cloud Properties	.29
6.3	Oceani	c datasets	
	6.3.1	Baltic Sea Automated Sea Ice	.30
	6.3.2	ESA-SST-CCI-Analysis	
	6.3.3	ESA-SST-CCI-AVHRR	32
	6.3.4	HadISST1	
	6.3.5	ESA Ocean Colour CCI	34
6.4		here	
	6.4.1	Sea Ice Volume Flux	
	6.4.2	Cryoland Glacier Products	
6.5		urface	
	6.5.1	METEOSAT Surface Albedo	
	6.5.2	GEOV1 Leaf Area index (LAI)	
	6.5.3	GEOV1 fAPAR	
	6.5.4	GEOV1 Surface Albedo	39

FMI

METEO

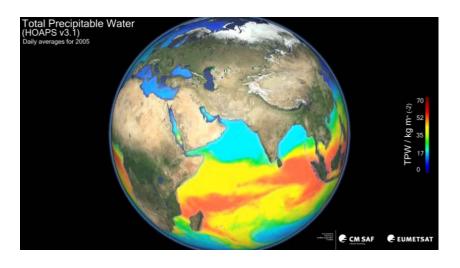
COOPERATION

vision on technology

ECMWF

WP3: Validation process

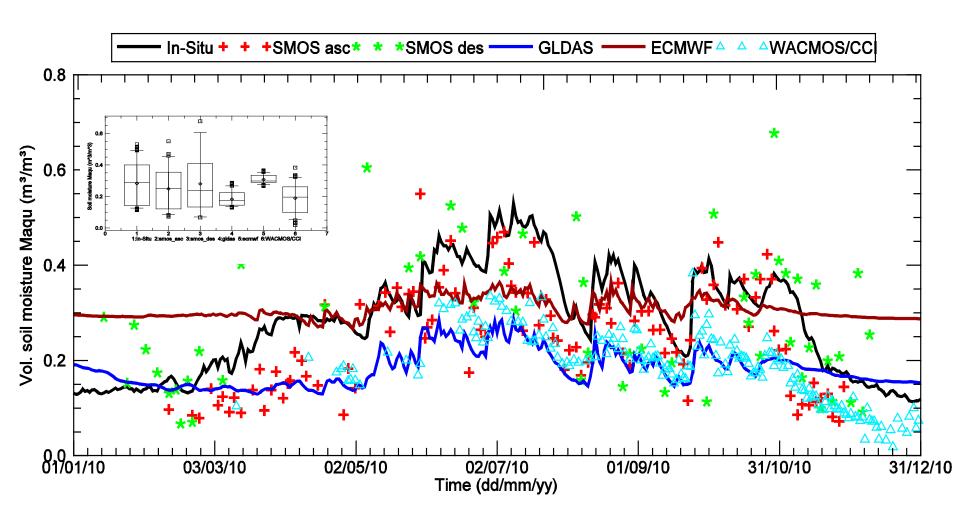
Protocol for verifying, monitoring, D3.31 ✓ calibrating and validating FCDRs and TCDRs of the CDRs/ECVs	A harmonized approach for each ECV/CDR/FCDR, based on SMM.
D3.32 Generic list for validation strategy for CRDs/ECVs	Analysis of ECV/CDR validation network and strategy
D3.33 Assessment report on consistency of the CDRs/ECVs	Analysis of ECV/CDR consistency validation



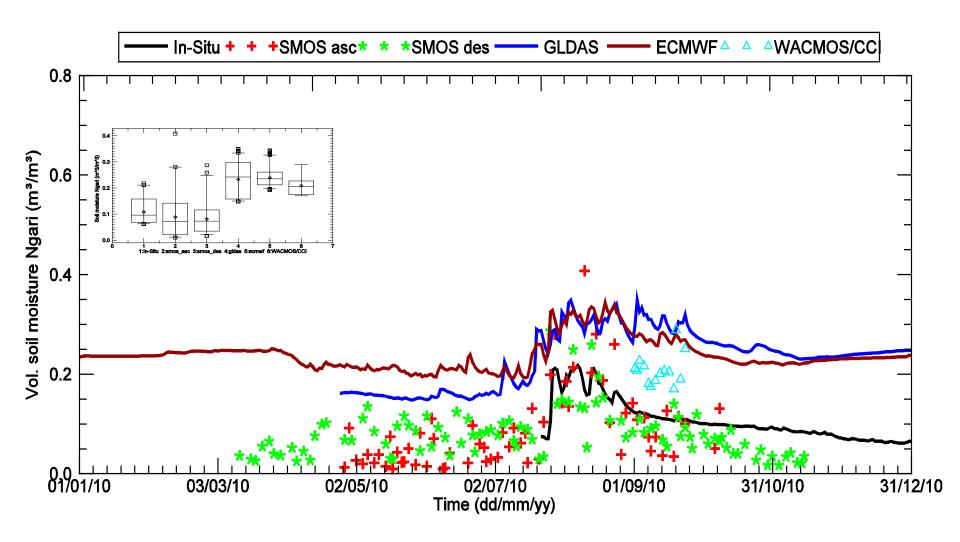
Why validate ? – consistency of ECVs (A. Cross-validation of multiple independent datasets)

Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs)

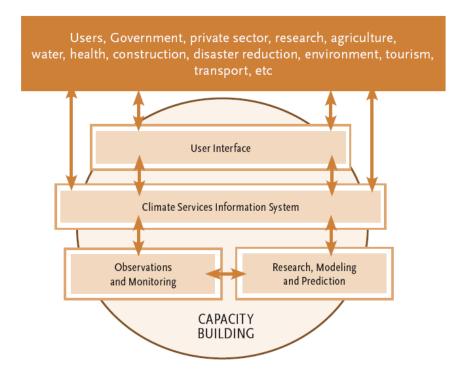
Su et al. 2011, Hydrol. Earth Syst. Sci.,



Maqu SMST Network – validation results



Ngari SMST Network – validation results



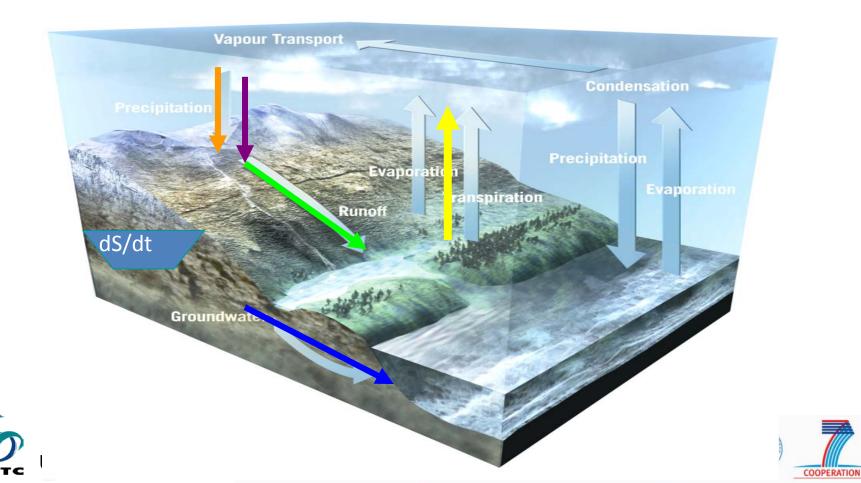
Global Framework of Climate Services

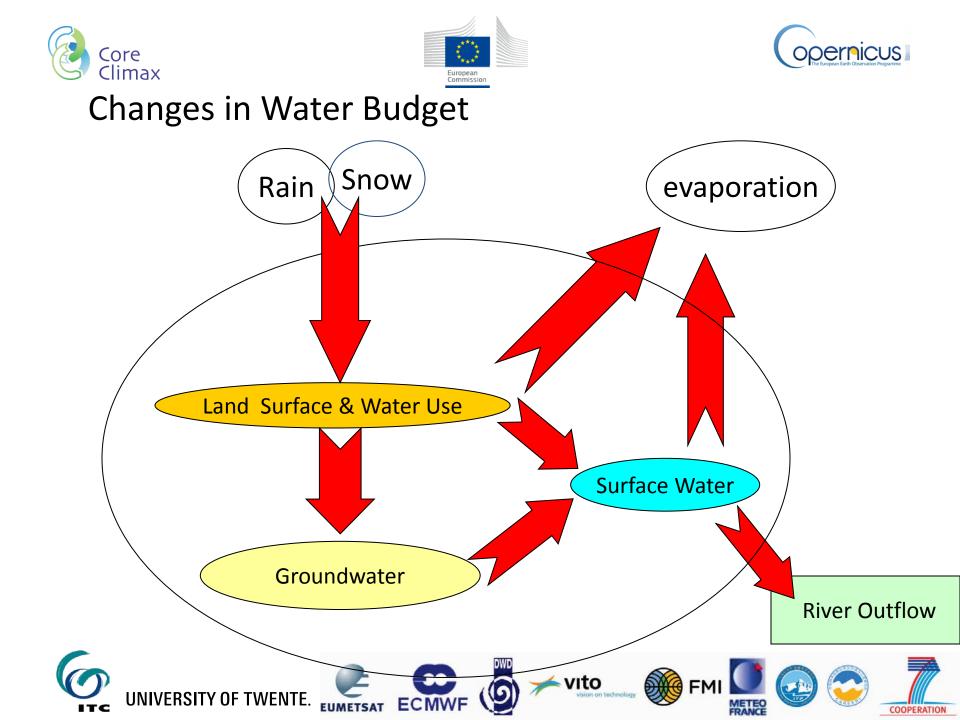
Our response

FP 7 CORE-CLIMAX:

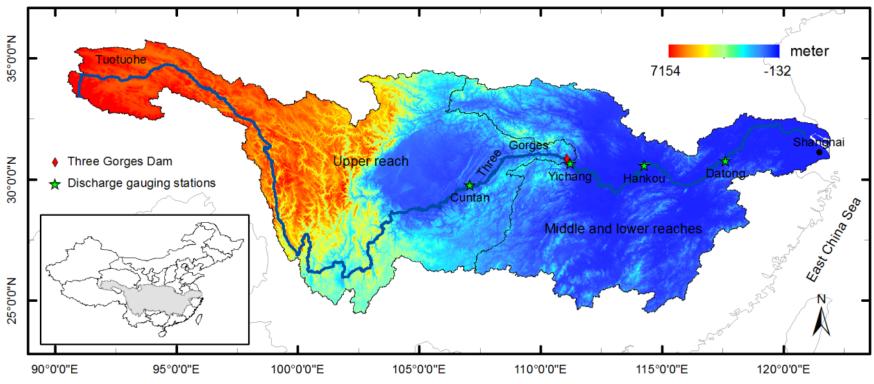
COordinating Earth observation data validation for RE-analysis for CLIMAte ServiceS

A schematic illustration of the pillars of the Framework, with the indication that the Capacity Development component encompasses the other components. Arrows depict flows of information and feedback.





B. Cross-validation among different physically interrelated variables Spatial Water budget of the Yangtze River Basin



COOPERATION

Yangtze River Basin

•Upper Yangtze reach, from Tuotuohe, to Yichang.

EUMETSAT

- •Middle reach from Yichang to Hukou.
- •Lower reach extends from Hukou to the river mouth near Shanghai.

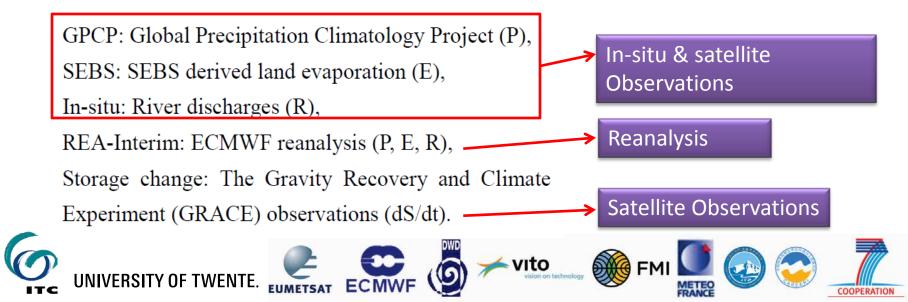
ECMWF

•Cuntan, Yichang, Hankou, and Datong are four gauging stations located along the

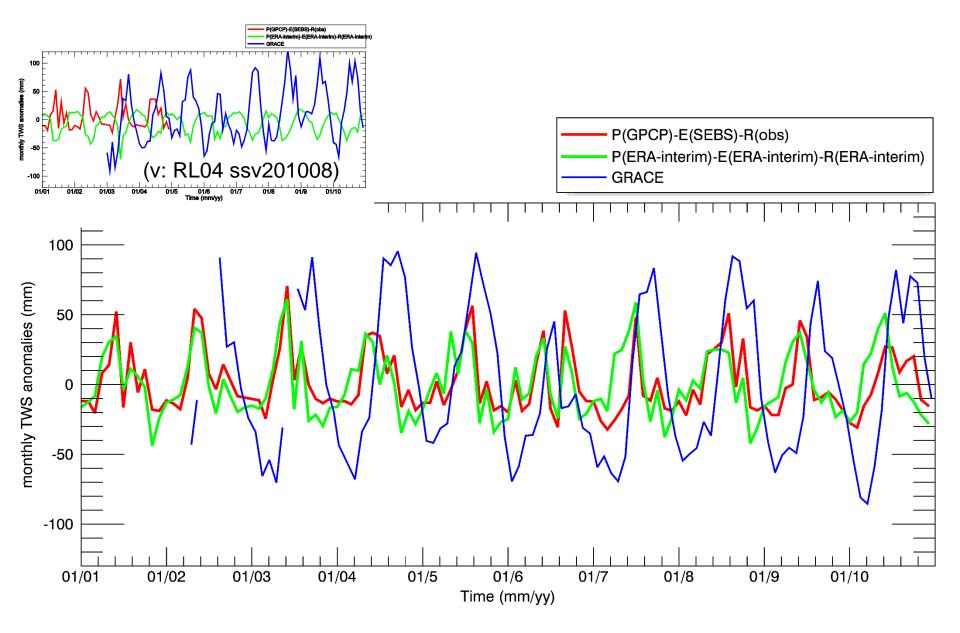
vito

mainstream of the Yangtze.

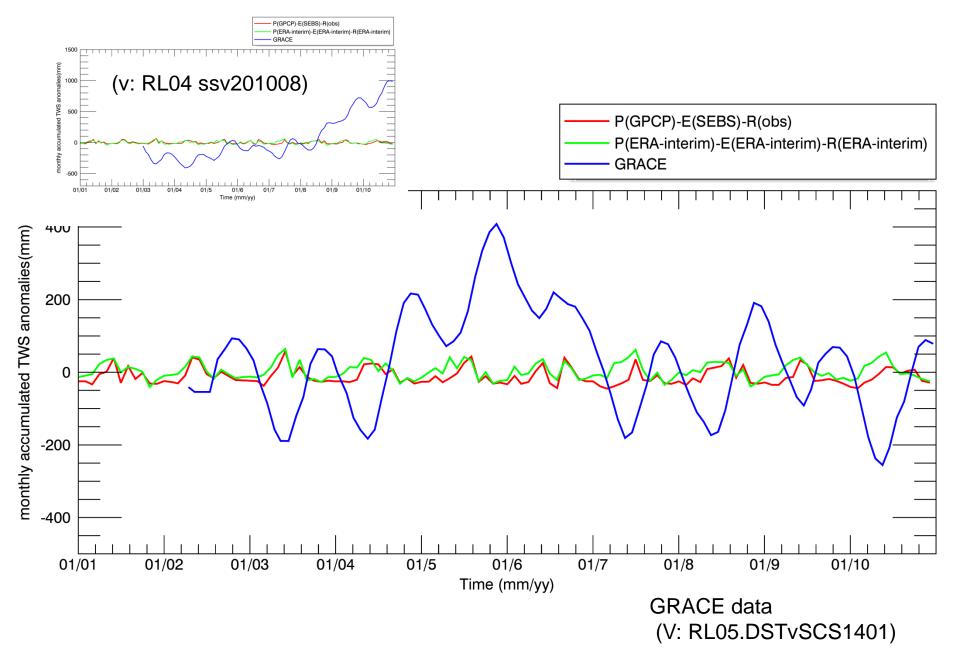
UNIVERSITY OF TWENTE.



Ex 3: Closure of Water Cycle over a river basin

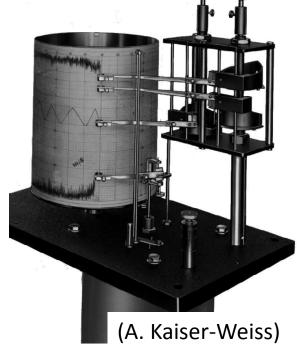

Total water Storage(TWS)

$$\frac{\partial S}{\partial t} = P_{GPCP} - E_{SEBS} - R_{Obs} * f(P_{i,j}, E_{i,j})$$


For this study we used the following datasets.

Upper reach TWS anomaly

Cumulative TWS anomaly at Upper Reach (Yichang station)



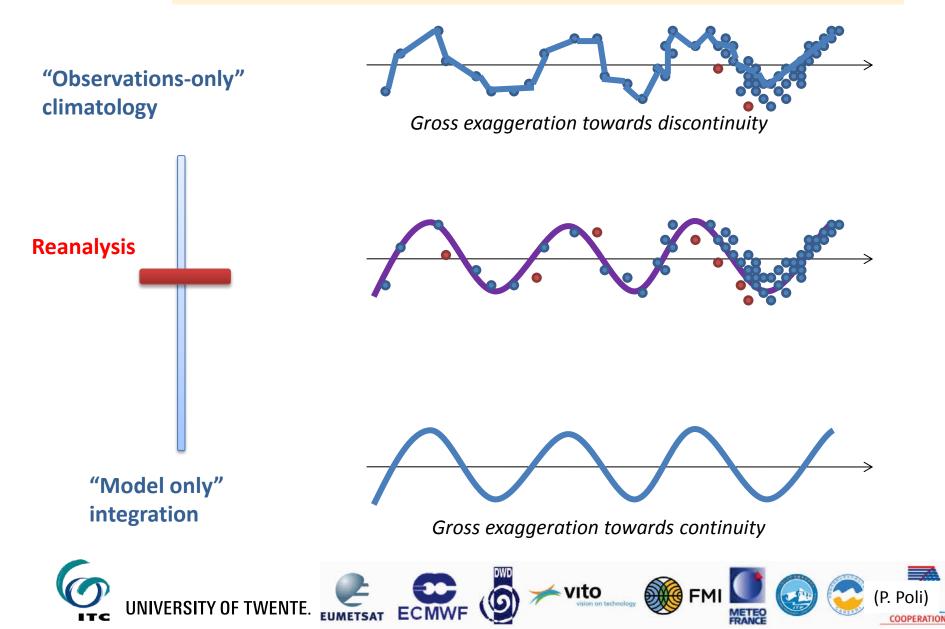
Or shall we just use in-situ data?

+ collected over many decades (also beyond 1900)
+ measured with great care, documented with meta-data

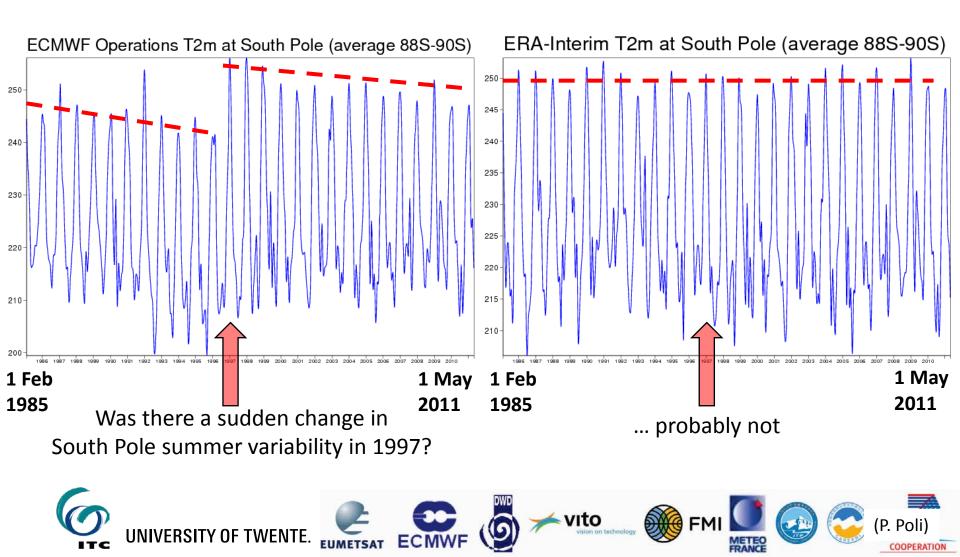
- Diverse collections (national)
- Changes in: measurement practice, instrumentation, station location, total number of stations, ownership, archives and storage systems, and quality control



WP4: Reanalysis feedback mechanism to CDR updates



D4.43 🗸 rean	edure for feeding back alvsis results and plans on	environment can provide. How reanalysis teams can best communicate and exchange their needs for CDR updates
D4.42 🗸 for C	gn of support infrastructure CDR quality assessment in a alvsis environment	The main elements assisting CDR providers in making appropriate preparations for receiving maximum benefit from the feedback that the reanalysis
D4.41 🧹 impr	edure for feeding back oved ancillary data to assist undates	A range of measures was proposed to improve the CDR generation with ancillary data from reanalysis products, by using improved and consistent data from reanalysis products.


Reanalysis Objective: Reconstruct the past

Why re-analyze?

Overall aim is a greater time-consistency of the products AND improved understanding of past events (including extremes) by using state-of-the-art models and tools

COOPERATION

FM

Procedure for feeding back improved ancillary data to assist CDR updates

Current practice	Considera	Comments	Issues identified					
	-tions			Issue	Category	Proposed	Actions for	Comments
Some CDR	Scientific/	Blame lies partly on the	 Need for Algorithm 			Mechanism		
products do not	Technical	reanalysis producers	Descriptions and Input	Traceability of	Technical	Reanalysis datasets	Reanalysis	Urgent need to define
specify which		themselves, for they do	Data Specifications	reanalysis data		to have DOIs	producers	in a coordinated way
information from		not properly		being used as				the granularity of the
which reanalysis		identify/tag their	 Traceability of reanalysis 	ancillary input				DOI (e.g., per
was used as		products in the	data being used as	to CDR				geophysical variable,
ancillary input		metadata	ancillary input to CDR	generation	_			or per reanalysis)
			generation	Data formats	Technical	Provide data in a	Reanalysis	
CDR generators	Scientific/	Sometimes leads to	 Data formats 			variety of well-	producers, CDR	
develop their own	Technical	duplication of effort	 Need to develop/adopt 			established formats	Generators	
handling tools of		and sometimes to	common toolboxes. Some			Provide format	and/or User	
ancillary data		inconsistency with	functionalities exist, e.g.			conversion tools	Community	
		other CDRs	the CDO package, but	Access to	Technical	Further	Reanalysis	
			more are required, and on	reanalysis data		development of	producers in	
			a sustained basis	for use as		"public access",	consultation with	
Ad-hoc	Technical	Ad-hoc arrangements	Access to reanalysis data for use	ancillary input		retain bi-lateral	CDR Generators	
arrangements to		are flexible, but are	as ancillary input to CDR	to CDR		exchange where	and User	
access reanalysis		time-consuming at best	generation	generation	C 1 10	appropriate	Community	
data for use as		and can be		Informed use of	Scientific	Dialogue between	Reanalysis producers,	Dialogue to be
ancillary input to		showstoppers at worst.		reanalysis data		reanalysis producers,	scientific users.	supported by Quality Assessments.
CDR generation				as ancillary		"scientific" users.	climate service	Assessments.
Use of reanalysis	Scientific	Difficult for CDR	Informed use of reanalysis data	input		and climate service	providers	
data as ancillary		generators to take into	as ancillary input			providers.	providers	
input could be		account the strengths		Coordination of	Programmatic	Effective	Reanalysis	Stakeholder
better-informed		and weaknesses of a		production	Flogrammatic	communication	providers in	representatives (CEOS,
		particular reanalysis.		schedules		channels between	consultation with	WCRP, ?)
Production	Program-	Not a problem as long	Better visibility of reanalysis and	sciedules		stakeholders	CDR Generators	went; ; j
schedules are not	matic	as each process can be	CDR production schedules would			stationalis	and User	
coordinated		iterated, and there is	help one another to align their				Community	
		always a "next	proposals with each other's				,	
		opportunity" to take	application (feeding CDR into	Table 3: Solutio	ns proposed to ir	nprove CDR generatio	on through consiste	nt and well-identified
		onboard or generate a	reanalysis and vice-versa, feeding	ancillary reanal	ysis data			
		CDR	reanalysis ancillary data into CDR)					

Table 2: Summary of the current practices and issues in feeding ancillary data to CDR generation

Design of support infrastructure for CDR quality assessment in a reanalysis environment

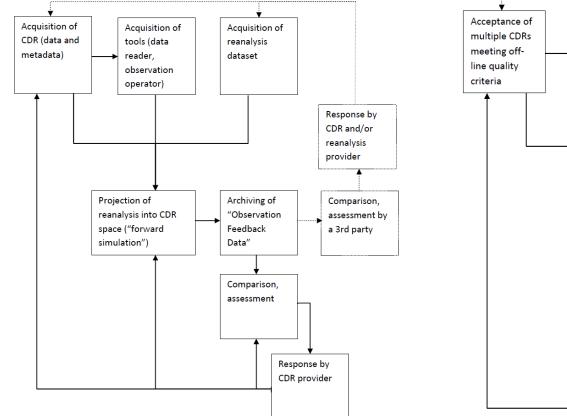
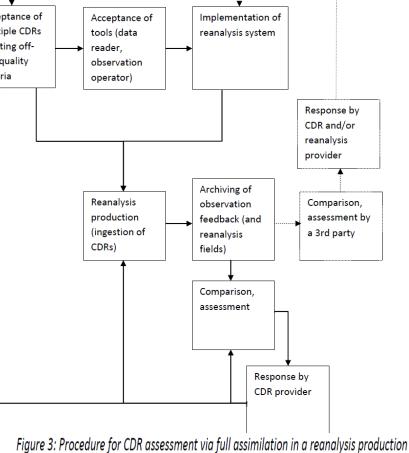



Figure 2: Process for comparing a CDR with a pre-existing reanalysis ("preassimilation, off-line assessment"). Projection ("forward simulation") typically involves a collocation step.

(on-line assessment)

Procedure for feeding back reanalysis results and plans on CDR updates

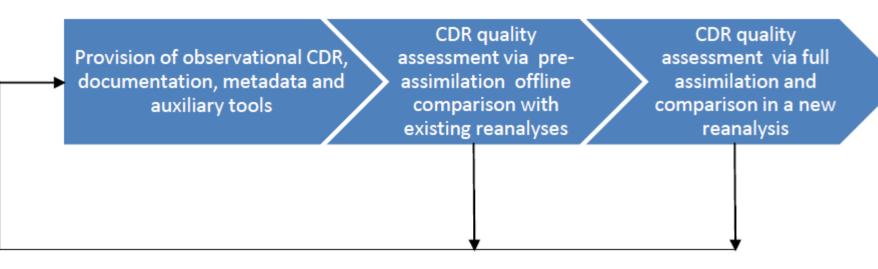
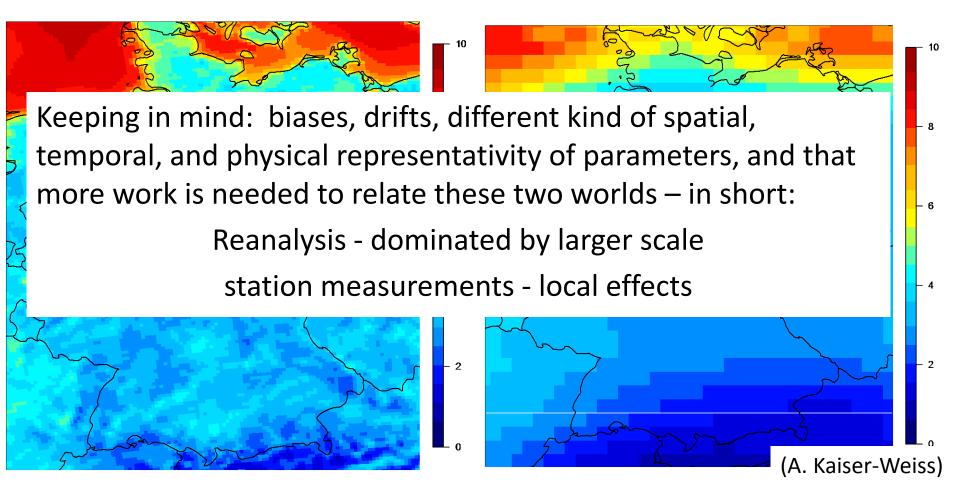
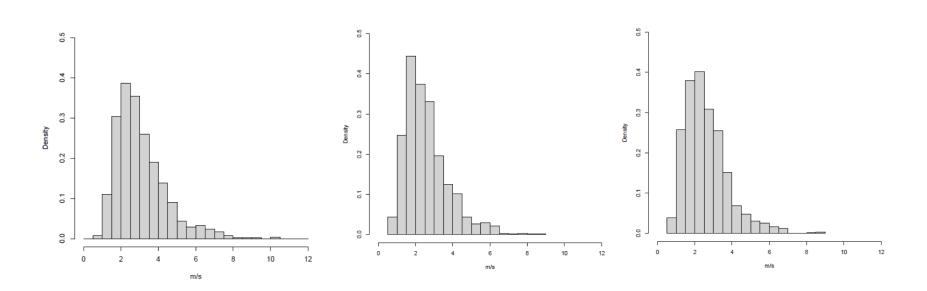


Figure 2: Progress of an observational CDR to quality assessment via full assimilation in a new reanalysis. Progress is contingent upon satisfactory assessment in pre-assimilation/offline comparisons. The arrowed lines represent the feedback loop for stimulating improved CDRs and/or supplementary materials (documentation, metadata, auxiliary tools etc). Adapted from Core-Climax Document D4.42 "Design of Support Infrastructure for CDR Quality Assessment in a Reanalysis Environment".

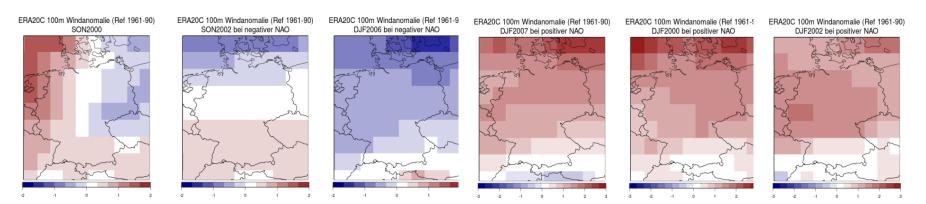


Regional and global reanalysis gives us a standard for comparing a multitude of in-situ data



Frequency distributions of "good stations" match reasonably well with the reanalyses

Daily mean wind speed between 2007 and 2009 at the Nuremberg station


Can you guess which is from the station data, which from regional reanalysis. which from global reanalysis? (A. Kaiser-Weiss)

Reanalysis for inter-annual variability

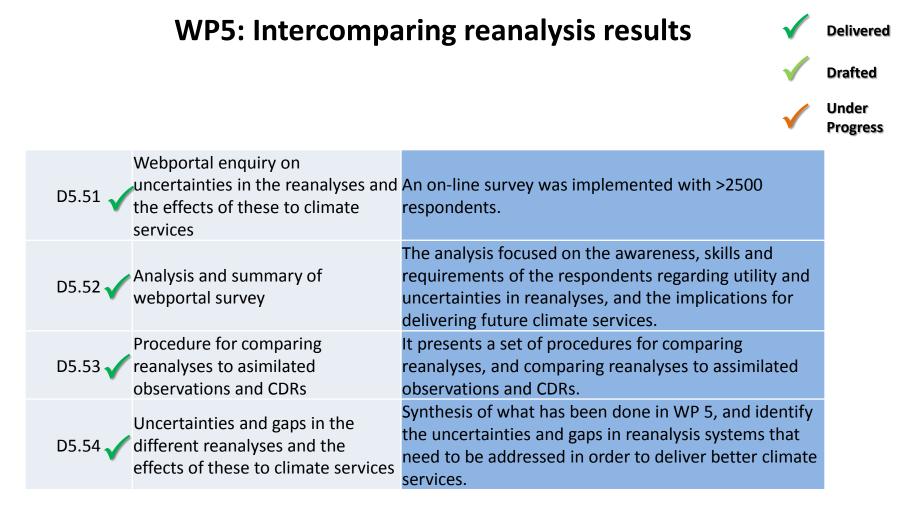
Inter-annual variability of anomaly in seasonal mean wind speed from ERA-20C

Example application: Some stations in the early eighties had suspiciously many calms in the 10m station winds. ERA-20C data did not confirm this change in frequency distribution. Conclusion: In earlier years, at some "bad stations", there might not always have been properly distinguished between instrument failure and calm.

(A. Kaiser-Weiss)

(A. Kaiser-Weiss)

Summary of feedback to CDR generation and comparison of reanalyses


- * Reanalysis can serve as a historical data quality control tool (among other ways of searching for problems in historical data).
- * Though 10m winds is surely not the best parameter to use from reanalysis, in our case (DWD station data) it was good enough to spot a bug, and to motivate search for more metadata.

Analysis and summary of webportal survey

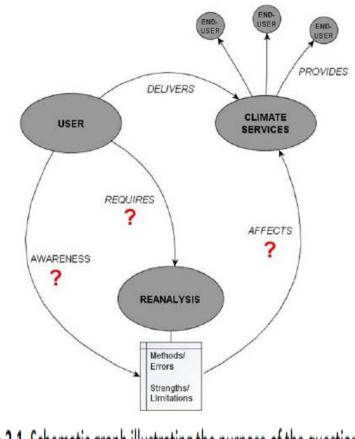
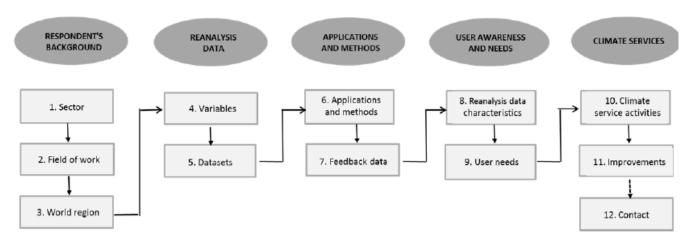
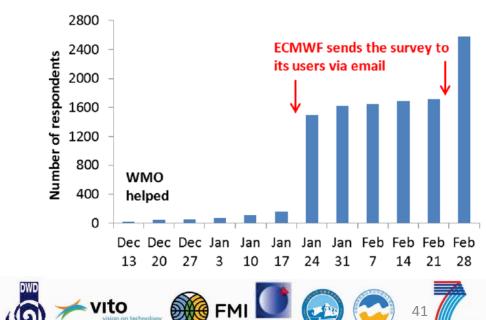


Figure 3.1. Schematic graph illustrating the purpose of the questionnaire.



Analysis and summary of webportal survey



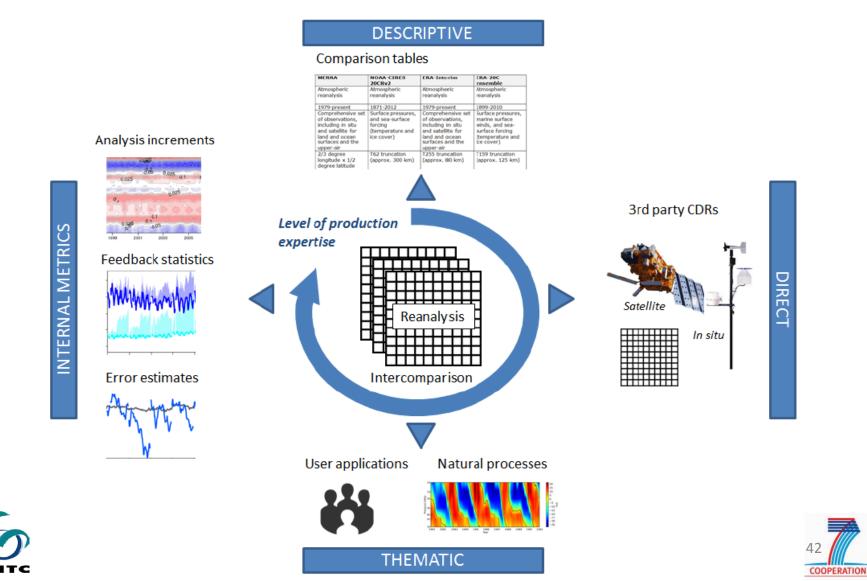
EUMETSAT

ECMW

Figure 3.2. Flowchart of the questionnaire.

UNIVERSITY OF TWENTE

METEO FRANCE


COOPERATION

Procedure for comparing reanalyses to asimilated observations and CDRs

Uncertainties and gaps in the different reanalyses and the effects of these to climate services

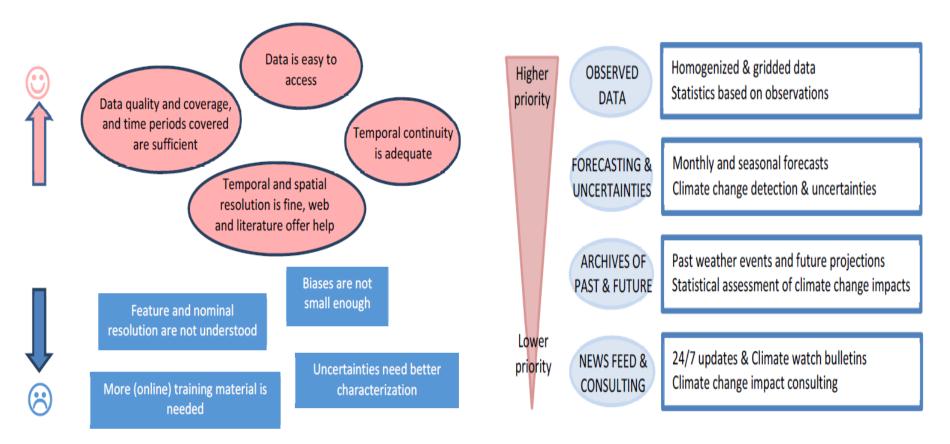


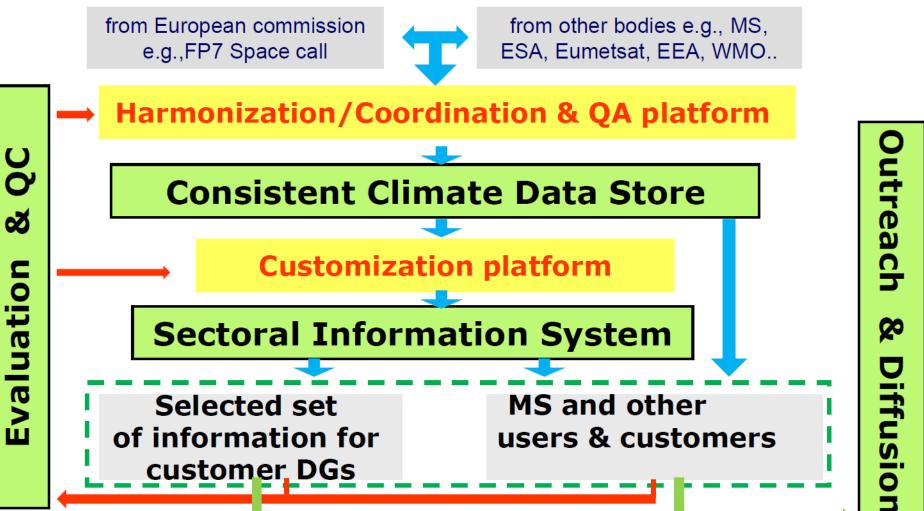
Figure 1. Summary of the rating of characteristics of reanalysis products.

Figure 2. Priority of different climate service areas according to the questionnaire responses.

Summary overview

1) CORE-CLIMAX has proposed a structured process for assessing European capability in delivering ECVs;

- Using and contributing to data record inventories;
- Using an updated System Maturity Matrix approach of 'measuring' if data records are produced with best practises for science and engineering;
- Using a novel approach of an Application Performance Metric to break down comprehensive information on data record quality into a performance index;
- 2) CORE-CLIMAX has proposed a validation process aiming at qualifying the accuracy of the climate variables;
- 3) CORE-CLIMAX has created a feedback mechanism ensuring that the results of the re-analysis process get appropriately reflected into updates of the CDR.
- 4) CORE-CLIMAX has developed a process to compare re-analyses.


Expectations to co-location meeting

- 1) To solicit comments to the CORE-CLIMAX approaches & results
- 2) To get updated with other relevant European projects
- 3) To seek opportunities to take up achievements of CORE-CLIMAX
- 4) To coordinate further developments in generating CDRs
- 5) To contribute to the C3S

Architecture of the Copernicus Climate Change service

A logical view

Monitoring, QA of the service and feedbacks to production or R&D

Education, general public and authorities, reports, media, bulletin

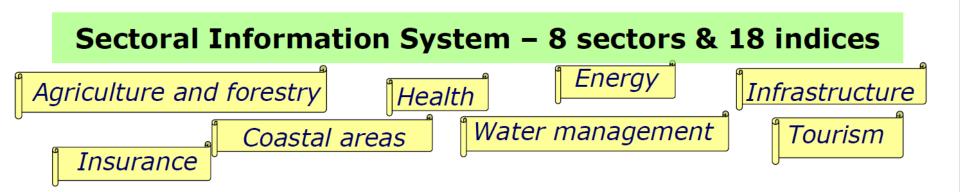
Copernicus Climate Change service

Road map stage II

Consistent Climate Data Store - 20 ECVs & 7 indicators -Observed, re-analyzed and model projected products

ATMOSPHERE

Surface Air Temperature Surface Precipitation Water Vapor Surface Radiation Budget Earth Radiation Budget Carbon Dioxide & Methane Ozone & Aerosols Cloud properties

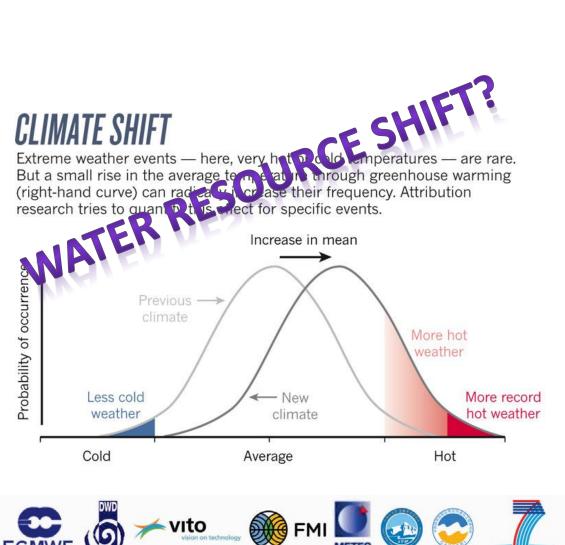


Ocean Color Sea Ice Sea Level Sea Surface Temperature Global Ocean Heat Content

LAND

Snow Cover Glaciers & Ice Caps Albedo FAPAR Fire Disturbances Ice Sheets

What is the missing link? Essential Water Variables!



COOPERATION

Impacts and projections in water resources

- Q1: What are observed impacts to water resources in Yangtze due to climate and human changes ?
- Q2: Will the changes in the Yangtze River Basin influence the East Asian monsoon patterns?
- Q3: What will be the spatial/temporal distribution of water (sediment) resources in 21st century ?

JNIVERSITY OF TWENTE

