GAIA-CLIM H2020 project

Characterizing satellite measurements using in-situ, groundbased and sub-orbital capabilities

Peter Thorne, January 15th 2015

With thanks to WP leads: Fabio Madonna, Karin Kreher, Jean-Christopher Lambert, Bill Bell, Joerg Schulz, Martine de Maziere

A new project starting in March

- NERSC (coordinator)
- NUIM (Science coordinator)
- BIRA (WP lead)
- CNR (WP lead)
- MO (WP lead)
- BKS (WP lead)
- EUMETSAT (WP lead)
- ECMWF
- KNMI
- FMI

- MPG
- Bremen University
- Tallinn University of Technology
- NPL
- Helsinki University
- Bergamo University
- Lille University
- KIT
- Plus NOAA, NASA (no cost)

Project rationale

- To date satellite to in-situ comparisons have been ill-posed if we desire definitive answers.
 - Comparing two imperfect measures of a noncoincident snapshot of a fluid dynamical system they will always differ.
 - Q. Does that difference matter?
- To answer that need to fully understand at least one of the two measurements and the expected geophysical difference arising from non-coincidence.

Focus on *reference* in-situ observations

In the GCOS Reference Upper Air Network, a reference observation is defined as having the following charactersistics:

- ✓ Is traceable to an SI unit or an accepted standard
- Provides a comprehensive uncertainty analysis
- ✓ Is documented in accessible literature
- ✓ Is validated (e.g. by inter-comparison or redundant observations)
- ✓ Includes complete meta data description

Establishing Uncertainty

- Error is replaced by uncertainty
 - Important to distinguish contributions from systematic and random effects in the measurement
- A measurement is described by a range of values
 - m is corrected for known and quantified systematic effects
 - u is random uncertainty (generally assumed gaussian but does not need to be)
 - generally expressed by m ± u

Literature:

- Guide to the expression of uncertainty in measurement (GUM, 1980)
- Guide to Meteorological Instruments and Methods of Observation, WMO 2006, (CIMO Guide)
- Reference Quality Upper-Air Measurements: Guidance for developing GRUAN data products, Immler et al. (2010), Atmos. Meas. Techn.

Consistency for perfectly co-located measures

 Reference quality in-situ (m1) and satellite measurements (m2) should be consistent:

$$\left| m_1 - m_2 \right| < k \sqrt{u_1^2 + u_2^2}$$

- No meaningful consistency analysis possible without uncertainties
- if m₂ has no uncertainties use u₂ = satellite instrument specification (agreement within stated design specification tolerance)

$ m_1 - m_2 < k \sqrt{u_1^2 + u_2^2}$	TRUE	FALSE	significance level		
k=1	consistent	suspicious	32%		
k=2	in agreement	significantly different	4.5%		
k=3	-	inconsistent	0.27%		

Consistency in a finite atmospheric region

- Co-location / co-incidence matters and inflates the expected difference
- Determine the variability (σ) of a variable (m) in time and space from measurements or models
- Two observations on different platforms are consistent if

$$|\mathbf{m}_1 - \mathbf{m}_2| < k\sqrt{\sigma^2 + u_1^2 + u_2^2}$$

✓ This test is only meaningful, i.e. observations are co-located or coincident if: $\sigma < \sqrt{u_1^2 + u_2^2}$

- Define data quality attributes and map by capabilities
- Improve metrological quantification of in-situ groundbased and sub-orbital measurements
- Robustly quantify the impacts of inevitable measurement mismatches
- Use Data Assimilation to improve the usefulness of high quality measurements
- Provide useable and actionable information to end users to improve the value of both satellite and non-satellite data

WP1: Mapping capabilities

- Define tiers of data quality based upon their characteristics through extension of the CORE-CLIMAX maturity matrix to measurement qualities such as traceability, measurement metrological maturity and sustainability
- Map these capabilities
- Provide mapping tool to visualize the capabilities
- Assess geographical gaps in capabilities

WP2: Quantifying measurement uncertainties

Instruments / programme	Т	q	CO_2	CH ₄	O ₃	Aerosols	СО	НСНО	NO ₂			
Pre-existing / already in process on GAIA-CLIM timescales												
Radiosondes (RS92 and various others)												
Frostpoint hygrometer sondes												
Ozonesondes												
QA4ECV project (various instruments)												
Planned in GAIA-CLIM												
Lidars												
Microwave radiometers												
FTIR / FTS												
UV/visible spectroscopy												
MAX-DOAS/Pandora												
GNSS-PW												

WP3: Measurement mismatch uncertainties

- Satellites and other measures will never measure the exact same volume over the exact same interval.
 - Differences in time of observation (including measurement time integral mismatch and diurnal cycle effects)
 - Differences in horizontal geolocation, including such timevarying effects as drift of balloon borne measures
 - Differences in vertical registration, especially in presence of altitude uncertainties/shifts
 - Differences in vertical smoothing (need for vertical averaging kernels for both columnar and profile measures)
 - Differences in horizontal smoothing (consider e.g. an in situ sonde with respect to a 300 km satellite horizontal resolution)
 - Vicarious data issues such as cloud impacts if comparing to radiances in the IR spectrum.

• WP3 will use model and statistical approaches to quantify the effects.

WP4: Use of data assimilation as integrators

- Investigate the value of use of data assimilation and reference quality measurements
 - Constrain / better understand biases in data assimilation
 - Propagate information from point measures to more regionally / globally complete estimation
 - Use in both NWP and reanalyses to be investigated

WP5: Virtual observatory

- Make the outcomes of previous WPs useable and actionable
 - Collocation database build
 - Availability of Level 1 (radiance) / 2 (geophys retrieval) satellite to in-situ data comparisons including uncertainties
 - Graphical display and user interface
 - Build with expectation of becoming a sustainable service

WP6: Outreach and gaps assessment

- Gaps in geographical coverage and their impacts arising from the geographical mapping exercise
- Gaps in knowledge of measurement properties and uncertainties for both specific instrument types and on an ECV basis.
- Gaps in understanding of the impact of measurement mismatches arising from inadequacies in knowledge of how to deal with measurement mismatch issues.
- Open issues regarding how to use dynamical model and data assimilation techniques as integrators
- Issues that remain in enabling easy use of reference quality measures as cal/val tools.
- Gaps between user needs and current observational and analysis capabilities
- Consideration to the somewhat fractured nature of observing systems.

Gap assessment is iterative with community

Potential inter-project synergies

- **QA4ECV** ensured complementary not duplicative
- FIDUCEO UT wv and aerosols work would provide metrological uncertainty on the satellite measurements (u₂ in earlier equations robustly quantified so do we match? X-check)
- ERA-CLIM2 / UERRA potential synergies with GAIA-CLIM WP on data assimilation.
- **CORE-CLIMAX** extension of data product maturity matrix concept to measurement system maturity aspects.

Summary

- GAIA-CLIM will:
 - concentrate upon building SI traceability and physical mismatch uncertainty into in-situ-satellite comparisons using several techniques incl. data assimilation
 - produce a toolset for satellite characterization / validation through a virtual observatory hosted by EUMETSAT
 - produce an assessment of gaps in conjunction with the broader community
 - be fun (I hope ...)
- We start with a Kick-off meeting on March 2nd in Matera, Italy