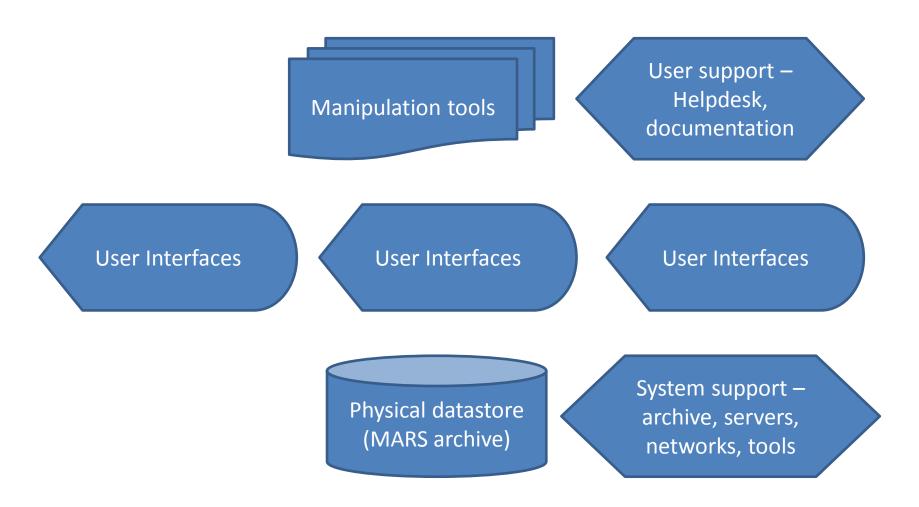


ECMWF Observation Feedback Archive

David Tan


- A product of ERA-CLIM
- Offers an open-access web interface
- Major improvement as it enables users to 'see' the observation systems and data locations, without transferring large data amounts across the network
- Still limited by export format (ASCII and ODB2)
- Publicly available ODB2 tools limited, but an ODB2 decoder is in the works
- Needs manual intervention to create the catalogue (not self-made)
- Ongoing developments:
 - Native support for **NetCDF** in MARS (ERA-CLIM2)
 - Searchable metadatabase of events (CHARMe)

Slide from Paul's talk. To continue – what does it look like in practice?

OFA Infrastructure

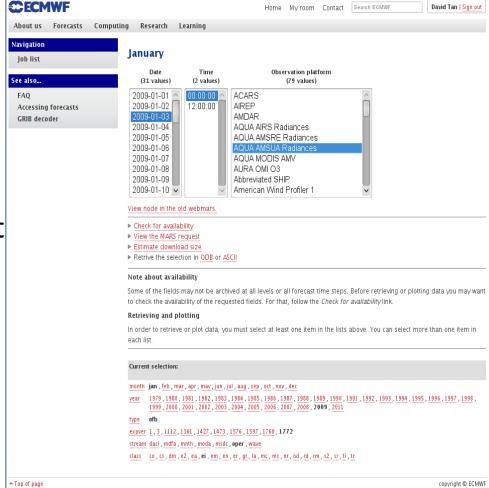
Why have multiple interfaces?

- The user base & expertise is increasingly diverse
 - Reanalysis producers
 - CDR providers
 - Satellite agencies & In-situ/ground-based communities
 - Wider than NWP ESA CCI, GCOS GRUAN, CHUAN, ACRE
 - Third parties
 - Science community SPARC Reanalysis Intercomparison Project etc
 - Climate service applications resource management etc
- One-size-fits-all doesn't work (but too many is unmanageable)

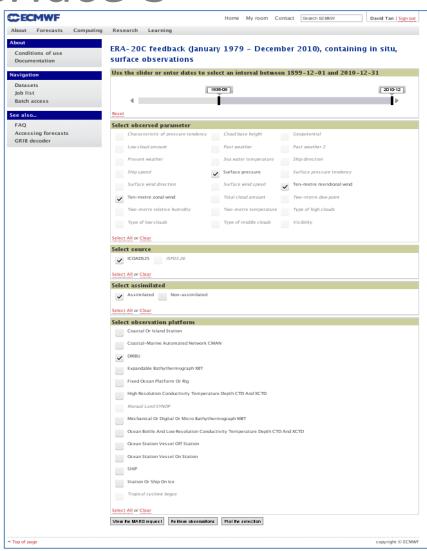
- Direct MARS requests
 - Via ECMWF internal userid and/or MARS server
 - Familiarity with MARS & ODB2 keywords and values

```
linux% emacs mirage request2b.txt
linux% cat mirage request2b.txt
retrieve,
class=e2,
date=2010-12-31,
expver=1873,
filter="select reportype, varno, timeseries index, \
        date, time, lat, lon, obsvalue, fg depar, an depar \
        where (datum status.active=1) and (source='ISPD3.26') and (varno=110);",
reportype=16002,
stream=oper,
time=all.
type=ofb,
padding=0,
target=ispd ps ManualLandSynop active 2b.odb
linux% mars mirage request2b.txt
MARS - INFO - **
MARS - INFO - **
```

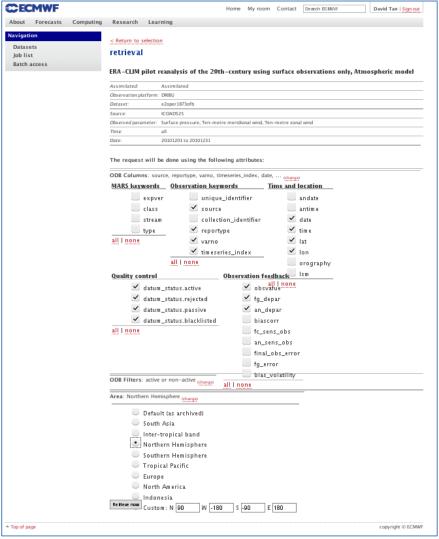

11-13 Nov. 2014


- Direct MARS requests
 - Maximum control on the request, minimal on data discovery
 - Underlies the GUI & Batch-mode/API/Python interfaces

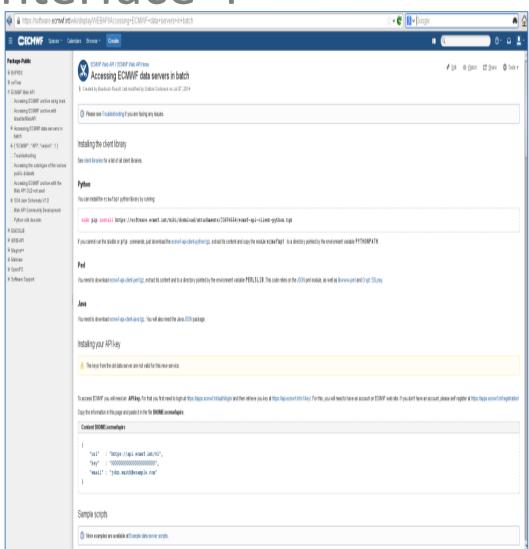
```
- 20141104.155420 - Calling mars on 'marser', callback on 54748
             - 20141104.155420 - Mars client is on loki.ecmwf.int (136.156.34.102) 54748
             - 20141104.155420 - Mars server is on dhs1111.ecmwf.int (136.156.164.31) 42869
             - 20141104.155420 - Got connection from dhs1111.ecmwf.int (136.156.164.31) 42869
             - 20141104.155420 - Server task is 219 [marser]
             - 20141104.155420 - Got connection from dhs1111.ecmwf.int (136.156.164.31) 54834
             - 20141104.155420 - Got connection from dhs1111.ecmwf.int (136.156.164.31) 39765
             - 20141104.155420 - Request cost: 1 field, 60.7229 Mbytes online, nodes: mvr01 [marser]
             - 20141104.155420 - Got connection from dhs1111.ecmwf.int (136.156.164.31) 44191
             - 20141104.155420 - Got connection from dhs1121.ecmwf.int (136.156.164.61) 50003
             - 20141104.155420 - Transfering 63672524 bytes
            - 20141104.155420 - odb_filter: sql = '"select reportype, varno, timeseries_index, date, time, lat, lon, obsvalue, fg depar, an depar where
) and (varno=110);"', total_to_read = 63672524
000 2014-11-04 15:54:20 (I) BitColumnExpression::BitColumnExpression: name=datum status, field=active, tableReference=: name =datum status
000 2014-11-04 15:54:20 (I) SQLSelectFactory::create: where = and(and(=(datum status.active,1),=(source,'ISPD3.26')),=(varno,110))
000 2014-11-04 15:54:21 (I) SelectIterator::parse: SELECT reportype,varno,timeseries index,date,time,lat,lon,obsvalue,fg depar,an depar FROM input WHERE
3.26')),=(varno,110)) SQLIteratorOutput
000 2014-11-04 15:54:21 (I) WriterBufferingIterator::pass1
000 2014-11-04 15:54:21 (I) WriterBufferingIterator::pass1init
000 2014-11-04 15:54:22 (I) Matching row(s): 87,765 out of 985,591
000 2014-11-04 15:54:22 (I) Skips : 897,826
000 2014-11-04 15:54:22 (I) WriterBufferingIterator::pass1: processed 87765 row(s).
            - 20141104.155422 - => odb filter
             - 20141104.155422 - Got connection from dhs1111.ecmwf.int (136.156.164.31) 44905
             - 20141104.155422 - Request time: wall: 2 sec cpu: 1 sec
             - 20141104.155422 - Visiting marser: wall: 2 sec
mars - INFO
            - 20141104.155422 - No errors reported
linux%
```



- ECMWF Internal Web browser
 - Catalogs allow data navigation/discovery
 - Hierarchy matches underlying MARS layout
 - Less syntactic, more semantic: Reportype (numerical codes) translated to "Observation platform" (strings)

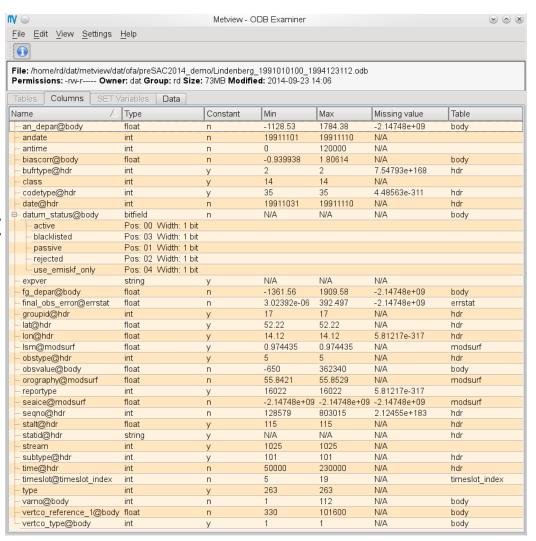
- ECMWF Public Web browser apps.ecmwf.int/datasets
 - Increasingly semantic: slider controls date range
 - And dynamic: selection of Surface Pressure restricts
 Platform, both restrict date range
 - Further customization available under Retrieve



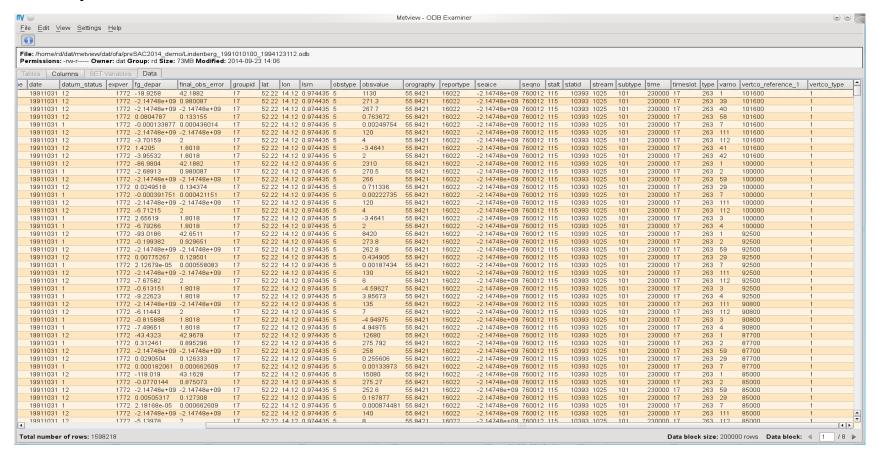
- ECMWF Public Web browser apps.ecmwf.int/datasets
 - As users gain experience, batchmode also desirable
 - GUI provides initial templates


 Requests more efficient when physical layout is known

- Batch-mode, APIs, Python
 - Initial use of Public browser
 - Provide syntactic translations of semantic selections
 - Users adapt/embed them within scripts and submit via data servers
 - Control of direct requests without overhead of ECMWF internal userids



 In-house graphics package


ECMWF

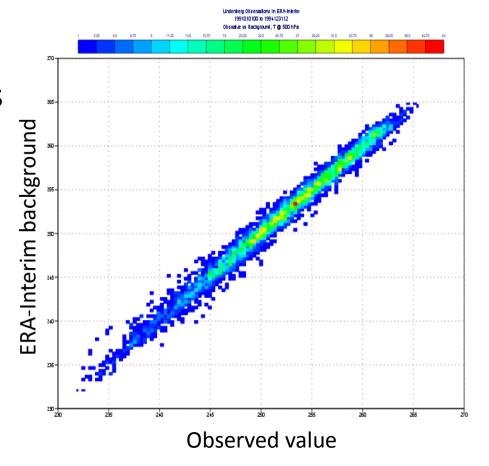
 Permits inspection of data contents at dataset level


Visualization Tools - Metview

Inspection of data values at individual datum level

Visualization Tools - Metview

Statistical summaries



Filtering of data

ECMWF

Plots for scientific analysis

Core

Manipulation Tools – odb_api

SQL-based interrogation

ECMWF

Underlies Metview and data retrievals

Concluding remarks

- Infrastructure needs are substantial
- Implementation well-advanced but still maturing
- Co-ordination would help to address:
 - Architecture: central or distributed/brokerage systems?
 - Common contents/formats?
 - Mappings, convertors, governance?
 - Community toolboxes?
 - Capacity building
 - Technical systems
 - Training users to access/interpret Observation Feedback
 - Providers of training and other services

Tools, by format

- BUFR: for linux and HPC
 - 'dump' and (linux:) 'viewer'
 - spaghetti Fortran programs that need tailoring for each type of BUFR message
- ODB1: for linux and HPC (preferred)
 - Fortran interface (quite heavy to implement)
 - SQL command-line (dump, search, sort, aggregate functions...)
 - Linux: viewer in metview/Magics++
- ODB2: for linux and HPC
 - API with Fortran, C++, and python bindings
 - SQL command-line (dump, search, sort, aggregate functions...)
 - Several wrappers at command-line for sub-setting, merging (adding blocks or attributes), comparing (attributes and numerical contents)
 - Linux: viewer in metview/Magics++

Observation identification tables at ECMWF

- Reportype:
 - Examples: 16002 indicates Manual Land SYNOP,
 1005 indicates NOAA 19 AMSUA Radiances, ...
 - http://data-portal.ecmwf.int/odbgov/ReportType/

- Geophysical variable numbers:
 - Examples: 7 indicates Specific humidity,
 119 indicates Brightness temperature, ...
 - http://data-portal.ecmwf.int/odbgov/Varno/